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Modeling of Polypeptide Chains as C, Chains, Ca Chains with C.., and
C. Chains with Ellipsoidal Lateral Chains
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ABSTRACT In an effort to reduce the number of degrees of freedom necessary to describe a polypeptide chain we analyze
the statistical behavior of polypeptide chains when represented as C, chains, C, chains with C. atoms attached, and C,
chains with rotational ellipsoids as models of side chains. A statistical analysis on a restricted data set of 75 unrelated protein
structures is performed. The comparison of the database distributions with those obtained by model calculation on very short
polypeptide stretches allows the dissection of local versus nonlocal features of the distributions. The database distribution of
the bend angles of polypeptide chains of pseudo bonded Ca atoms spans a restricted range of values and shows a bimodal
structure. On the other hand, the torsion angles of the C, chain may assume almost all possible values. The distribution is
bimodal, but with a much broader probability distribution than for bend angles. The C,,-C vectors may be taken as
representative of the orientation of the lateral chain, as the direction of the bond is close to the direction of the vector joining
C. to the ad hoc defined center of the "steric mass" of the side chain. Interestingly, both the bend angle defined by
Caj-C,aji+i-C, i+1 and the torsional angle offset of the pseudo-dihedral C,ji-C,,ai+i-C,afi+2-C i+2 with respect to CajCd+j-
C,ai+2-Cj+3 span a limited range of values. The latter results show that it is possible to give a more realistic representation
of polypeptide chains without introducing additional degrees of freedom, i.e., by just adding to the C, chain a C. with given
side-chain properties. However, a more realistic description of side chains may be attained by modeling side chains as
rotational ellipsoids that have roughly the same orientation and steric hindrance. To this end, we define the steric mass of an
atom as proportional to its van der Waals volume and we calculate the side-chain inertia ellipsoid assuming that the steric
mass of each atom is uniformly distributed within its van der Waals volume. Finally, we define the rotational ellipsoid
representing the side chain as the uniform density ellipsoid possessing the same rotationally averaged inertia tensor of the
side chain. The statistics of ellipsoid parameters support the possibility of representing a side chain via an ellipsoid,
independently of the local conformation. To make this description useful for molecular modeling we describe ellipsoid-
ellipsoid interactions via a Lennard-Jones potential that preserves the repulsive core of the interacting ellipsoids and takes
into account their mutual orientation. Tests are performed for two different forms of the interaction potential on a set of
high-resolution protein structures. Results are encouraging, in view of the drastic simplifications that were introduced.

INTRODUCTION

The determination of the conformation (or possibly the
conformations) that a biomolecule can assume, consistently
with its given chemical structure, is one, if not the main,
goal of structural biology. The unrestricted search for low-
energy regions in the phase space of the molecular degrees
of freedom invariably requires unaffordable computer time.
The combinatorial nature of the problem is always disguised
by imposing restraints or constraints on the possible con-
formations. These restrictions are derived from experimen-
tal data (e.g., from nuclear magnetic resonance (NMR) or
x-ray structural determination) or are based on prior knowl-
edge (e.g., on homology modeling, biased build-up proce-
dure, lattice models, etc.) (Abagyan and Totrov, 1994;
Eisenmenger et al., 1993; Hunt et al., 1994; Scheraga, 1993;
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All of the approaches that perform conformational
searches not subject to experimental restraints must reduce
the number of degrees of freedom or restrict the conforma-
tional space available for each degree of freedom.
To simplify the three-dimensional representation of mol-

ecules, Ca carbon coordinates (sometimes embedded in a
regular lattice), rather than the complete set of coordinates
for the corresponding residues, have often been employed
(e.g., Levitt and Warshel, 1975; Levitt, 1976; Godzik et al.,
1993). Furthermore, pseudopotentials describing the contact
interaction among any pair of amino acids have been pro-
posed based on steric hindrance of residues, observed fre-
quencies of contacts, and/or structural propensities observed
in selected sets of protein structures representative of the
whole structural database (Miyazawa and Jemigan, 1985;
Hinds and Levitt, 1992, 1994; Brower et al., 1993; Gold-
stein et al., 1992; Gerber, 1992; Kolinski and Skolnick,
1994a).

After the degrees of freedom of the polypeptide have
been drastically reduced, specific algorithms are devised to
search the conformational space in the most efficient way.
With few exceptions (Levitt, 1976; Rackovski, 1990;
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Godzik et al., 1993; Oldfield and Hubbard, 1994; De Witte
and Shakhnovich, 1994) little attention has been paid to the
first step of this procedure, i.e., the "schematization" of the
polypeptide chain. Possible reasons for this are i) the model
is so "coarse grained" that spatial details regarding amino
acids are considered immaterial; ii) including other features
would prohibitively increase the computational load; iii) in
the field of statistical mechanics none of the statistical
properties of a (very large) ensemble of particles depend on
the lattice employed to model the system. Although all of
these motivations appear reasonable, it must be considered
that lattice models in statistical physics are used to derive
properties of a class of molecules, rather than a single
molecule, under the assumption that the system has very
large dimensions, which is contrary to the case of a biomol-
ecule. In this context, the most correct use of lattice models
is that aimed at deriving general properties of proteins rather
than the conformation of a single protein (Cattarinussi and
Jug, 1990, 1991; Abkevich et al., 1994; Sali et al., 1994;
Skolnick and Kolinski, 1990a; Sikorski and Skolnick, 1990;
Wolynes et al., 1995), although lattice models have also
been used to predict protein tertiary structure with remark-
able success (Skolnick and Kolinski, 1990b; Kolinski and
Skolnick, 1994b). Another point against excessive simpli-
fication is that the computational load from considering
additional coordinates or degrees of freedom to describe the
spatial extension of a lateral chain has not been investigated
and might not be dramatic.

Investigations concerning the modeling of polypeptide
chains have appeared recently in the literature. The problem
of the reliability of lattice models for protein modeling has
been addressed by Godzik et al. (1993), who set resolution
limits for a wide number of lattices. Furthermore, the sta-
tistical properties of proteins when represented as Ca, have
been investigated by Oldfield and Hubbard (1994), who
studied in detail the correlation between pseudo-bend and
pseudo-dihedral angles involving four consecutive C, at-
oms, and by De Witte and Shakhnovich (1994), who cor-
relate the pseudo-dihedral angle with the types of the two
central residues and use the corresponding distributions to
derive torsional potentials in the quasichemical approxima-
tion.
The distributions of Cai,,i+l distances (subscript i in-

dicates the ith residue), CaiCai+lC,ai+2 bend angles, and
CaiCai+ iCai+2_Ca+3 torsion angles was also used by
Rackovski (1990) to classify protein structures at a short
length scale, although it was suggested that similar concepts
might be employed at a larger length scale.

In this work we focus on simplified models of polypep-
tide chains for global conformational search. We investigate
the expected and observed behaviors of polypeptide chains
when modeled as C. chains and Ca chains with attached
Ca,'s. We also propose to model side chains via rotational
ellipsoids, and we investigate two different forms of inter-
action potential to model side chain-side chain van der
Waals energy. Although other energy terms may be imple-

spherical symmetry model for side-chain steric hindrance
requires some discussion.
As is well known, polypeptide chains are chains of co-

valently linked amino acids. Each amino acid is character-
ized by its lateral chain, whereas, with few exceptions, the
backbone of all amino acids spans more or less the same
conformational space. The most detailed description within
the framework of classical force fields is the so-called
all-atom model where each atom of the molecule is de-
scribed by a set of coordinates and atomic properties such as
charge and Lennard-Jones parameters. A table of covalent
linkages is also given, and a force field that usually includes
bond, bend angle, torsion angle, non-bond (van der Waals
and electrostatic), and hydrogen-bond energy terms is used
to assign to any conformation its energy. It is obvious that,
even much beneath typical protein size, such a detailed
description is not suited for any systematic conformational
search. Simplified models have therefore been purposely
designed to perform such searches. There is a tradeoff
between the details included in the model and the compu-
tational effort needed to evaluate the energy of a conforma-
tion. Molecular details also increase, in a less severe way,
the time needed to generate a conformation. There is also a
tradeoff between the width of the phase space one considers
for each degree of freedom and the number of conforma-
tions one can explore. All-atom models and lattice models
may be viewed as the diverging ends of a hierarchy whose
steps progressively evolve in a coarser,grained or a more
rigid picture of the molecule. For instance, neglecting all of
the hydrogen atoms of a molecule, and accordingly read-
justing the force field, is a coarse-graining step whose aim
is to reduce the time needed to generate a conformation and
to evaluate its energy. Similarly, setting bond lengths to
constant values or restraining torsion angles to a few fixed
values is a stiffening step whose aim is to reduce the number
of generated structures.
The first question we-raise is, what is the behayior of

polypeptide chains when the crudest model is used, i.e.,
when only Ca's are considered? We will consider therefore
pseudo-bonds connecting Ca's of adjacent residues. The
database distributions are compared with those obtained by
global conformational search employing a stretch of two or
three alanines. The comparison highlights local versus non-
local features of the distributions.
Once this behavior has been described, we pose the

problem of including asymmetry due to side chains. Attach-
ing the C,3 carbons to the Ca chain appears a good choice
because the orientation of the C3-Ca bond may be repre-
sentative of the direction of the side chain with respect to
the main chain. Indeed, Skolnick and Kolinski (1990b) have
already succesfully used such a representation of a polypep-
tide chain on a lattice.
We further investigate whether additional degrees of free-

dom, like a pseudo-bond bend angle or torsion angle, are
needed for the description of the behavior of the C.3 carbons
or whether their position may be taken as fixed with respect
to the Ca chain. Rey and Skolnick (1992) have shown that
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the position of the C, carbon may be reconstructed to a high
degree of accuracy by the arrangement of the attached Ca,
and the two flanking Ca carbons. Compared to their ap-
proach our description aims at maintaining the Ca, chain
pseudo-dihedral angles as the only degrees of freedom.

Lattice nodes or C, positions have been used to simulate
residue properties via spherical potentials. We ask whether
it is possible to include in the model the description of the
elongate shapes of side chains via rotational ellipsoids,
which appear to be the most simple geometrical shapes that
preserve orientation in space.

METHODS

Software and database

To search systematically the conformational space of small
stretches of a polypeptide chain we have used an efficient
program written in C and implemented on machines running
under UNIX, DOS, and OS/2 operating systems. The pro-
gram, which is the reserved property of Italfarmaco S.p.A.,
was developed by one of us (SC) (Cattarinussi, 1994).
The program performs a tree-based conformational

search over a library of fragments created by the program
itself. The starting point of the whole process is an input file
that defines the topology and the energy parameters of the
primitive fragments.
A primitive fragment is defined by a group of atoms

whose relative positions are conserved in all of the molecule
conformations and whose space positions depend on the
same set of torsional angles. Obviously, such primitive
fragments exist only under the assumption of constant bond
lengths and bond angles.

According to this definition, the following four primitive
fragments should be defined to generate the conformations
of a very simple chain such as: CaHa3__CbHb2-CcHc3: f1 ->

(HIa, Ca), f2 -- (H2a, H3a, Cb), f3 - (Hlb, H2b, Cc), and
f4- (H1c, H2C, H3c). With this choice, it is assumed that the
chain is grown from atom Ca toward atom Cc.

For instance, when adding fragment f4 to an already
generated portion of the molecule, the only needed addi-
tional information concerns the position of the atoms of that
fragment expressed in a suitably chosen local reference
frame. The space coordinates for the added atoms are then
calculated by simply applying a coordinate transformation.
Obviously, a set of local coordinates should be available for
every allowed value of the torsion angle, Sp, around the
Cb-Cc bond. The collection of these coordinate sets forms
what we call a "catalog" for the primitive fragment f4. We
note that the catalog for fragment f, should contain only one
set of coordinates because the coordinates of atoms (Ha, Ca)
do not depend on any torsion angle.
The primitive fragment library, that is, the ensemble of all

catalogs for primitive fragments, is generated first and can
then be used to either directly generate the various confor-
mations of the molecule of interest or to construct catalogs
for larger fragments, which corresponds to creating a higher

level library. For instance, a higher level catalog could be
formed by the conformations of compound fragment F -*
(fl, f2). The number of library levels is only limited by the
available memory. Libraries of various levels can be used at
any time provided they have already been generated.

There are three advantages in generating and using mul-
tilevel libraries. First, they simplify the writing of the pro-
gram input file. Second, the speed of the program is in-
creased, as many coordinates and energy terms for a chain
are precalculated. Finally, they allow for an "energy-based"
selection process of the fragment conformations, which are
inserted in the various catalogs. Such a selection is possible
because a weighting function (energy) is evaluated for each
nonoverlapping conformation. The selection restricts in a
combinatorial fashion the number of generated structures.
The very large changes that can occur between successive

conformations precluded us from using Verlet lists (Verlet,
1967) that would have been updated at each step. We used,
instead, a procedure called "range search" (Sedgwick, 1990)
that is based on a binary tree organization of the atom
coordinates.
The program can handle more than one molecule. This

feature allows for the analysis of the interactions between
two or more linear molecules and, perhaps most important,
allows for the construction of branched molecules (each
branch is seen as a single molecule whose overall position
and orientation depend on the conformation of the "parent"
molecule).
Among other features of the program that will be de-

scribed in a forthcoming paper, we mention the ability to
search the conformational space of a molecule in a nonho-
mogeneous environment (the presence of a cell membrane
or a large protein domain) and the possibility of imposing
distance constraints.

For the purposes of the present work, as far as the ouput
is concerned, the program works as many other molecular
mechanics packages.
We have employed in all the calculations the AMBER

forcefield (Weiner et al., 1984, 1986) with the bond fixed
lengths being taken from the AMBER residue library as
supplied by the Biosym software (Biosym Technologies,
San Diego, CA). In all calculations 1_4 interactions were
scaled by a factor 0.5, and a distance-dependent dielectric
constant of 4r (r expressed in A, 1 A = 0.1 nm) was used.
To monitor the statistical behavior of simplified models

of polypeptide chains we have used a restricted structural
database of 75 high-resolution (<2.5 A) protein structures
(PDB id. code: lbov A, Icob A, lcsc, lcse E, lcse I, lf3g,
lfkf, lgdl, lgst A, lhoe, lifc, lipd, Ilfi, lmbc, lmsb A,
lnsb A, lovaA, lpaz, lphh, lrbp, lrnh, ltpkA, lubq, 1 utg,
lycc, 256b A, 2aza A, 2ca2, 2cdv, 2cna, 2cpp, 2cyp, 2er7 E,
2fb4 H, 2fcr, 2gbp, 2hip A, 2liv, 2ovo, 2rhe, 2sic I, 2sn3,
2trx A, 2tsl, 2tsc A, 3b5c, 3bcl, 3blm, 3chy, 3cox, 3ebx,
3grs, 31zm, 3sdp A, 4bp2, 4cla, 4cpv, 4dfr A, 4enl, 4fgf,
4gcr, 4icb, 4ptp, Scpa, 5p2l, Spti, Srxn, 6ldh, 6tmn E, 7aat
A, 7rsa, 8acn, 9pap, 9rnt, 9wga). The list was obtained from
the Brookhaven Protein Data Bank user-group directory
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(internet address: ftp.pdb.bnl.gov) and first published in
Williams et al. (1994). The 75 protein chains have little
sequence or structural similarity (sequence identity of
<30% and structure sequence alignment program analogy
score of <80) and are representative of several protein
families (Orengo et al., 1993), so that they may be consid-
ered an unbiased sample of the whole databank. The five
highest resolution structures that did not contain disulfide
bridges (PDB id. code: lcse I, 1 utg, lycc, 5p2l, 5rxn) were
further chosen to test the ellipsoid-ellipsoid potential. Hy-
drogens were added to the structures within the program
Insight II (Biosym Techonologies, San Diego, CA), and 300
minimization steps were performed to remove the few high-
energy spots that could result in artifacts in the analysis.
Van der Waals interactions among all pairs of residue

side-chain atoms (i.e., excluding the backbone atoms) were
calculated with the program Discover (Biosym Technolo-
gies, San Diego, CA).

Tests were also performed on thyroid trancription factor
1 homeodomain (TTF-1 HD). The structure used had pre-
viously been obtained by homology modeling and has re-
cently been confirmed by NMR (Fogolari et al., 1993;
Viglino et al., 1993; Esposito et al., unpublished results).
We choose this protein as a test case because a clear picture
of relevant interactions within the homeodomain has
emerged in recent years and we have had experience with
the structural details of TTF-1 HD. Moreover, several ex-
perimental dynamic determinations ranging from the atomic
to the molecular level are being accessed via NMR, so that
the same protein domain might be used as a model for
further developments of the methods proposed in this com-
munication.

C. chains

When replacing a real polypeptide chain with a pseudo-
chain consisting of linked atoms, the properties of this
pseudo-polymer should be investigated to efflciently design
the lattice to be used to model the chain or to properly bias
the conformational search. For instance, the observation that
the pseudo-bond angle among three consecutive Ca's lies in
the range of 850 to 145° enabled Delisi and co-workers
(Brower et al., 1993) to discard 16 of 24 possible moves for
each chain step on a lattice. The same observation was used
in a more general way by Kolinski and Skolnick (1994a) to
restrict the number of lattice moves for a polypeptide chain.
A chain may be characterized in the most basic way by

the distributions of the pseudo-bond distances, bend angles,
and torsion angles (Fig. 1). The latter parameter distribution
may introduce elements of asymmetry that are usually ab-
sent from lattice models of polymers and distance-based
force fields; in other words, a configuration has exactly the
same energy as its mirror image (note that a similar problem
has been found for experimental structures deposited in the
database; Pastore et al., 1991).
As the distance between two consecutive Ca's is highly

restricted near its equilibrium value, we may assume this to

Cpi +2

-ai+2

) Cai+3A
Cai

Ca i+3

CIi+2

B coi

CM

FIGURE 1 (a) The pseudo-bond bend angles defined by Caj-Cj+,1-
Cai+2 (0H) and C.irl-C.i+2 C,i+2 (02) are shown. (b) The pseudo-bond
torsion angles defined by C0-C.i1+iC.i+2_Cai+3 (02) and Ci-C,i+1-
CCd+2-C13i+2 (0H). The view is along Cad i-Cai+2 pseudo-bond. The
clockwise arrow defines positive angles and the anticlockwise arrows
indicate negative angles. The angle 4i obtained by the subtraction (0, - 02)
is defined as the C,i-C, + ICai{ +2Cj3i+2 pseudo-bond torsion angle offset
with respect to the Ca;i ;+ -C,i+2Cai+3 torsion angle. (c) Stereo view
of the center of steric mass (CM) for a valine residue in a stretch of
alanines. The C, pseudo-chain is shown together with all the heavy atoms.

be constant, so that the CaCa pseudo-bond, for the usual
trans-peptide bond geometry, has a definite length (-3.78
A). Residues found in the cis geometry (mainly, but not
exclusively, prolines) were excluded from the calculations
for consistency.
To analyze database distributions a reference distribution

was calculated by global conformational space exploration
for two small model compounds. In particular, we have
taken a "peptide" stretch including one or two alanines,
which, with the neglect of glycines, were considered as
minimal side-chain residues, and we have rotated the rele-
vant intervening 4 and 4, angles in steps of 100. All of the
atoms whose coordinates could depend on the intervening
main-chain dihedral angles were included. All of the bond
lengths, bend angles, and remaining torsion angles were
kept constant at the values found in the AMBER residue
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library as supported by the Biosym software package Discover.
For the sake of clarity the stretch of molecule that was con-
sidered for the pseudo-bond bend angle distribution was

CH3

C-CO-NH-C-CO-NH-C

and 36 X 36 conformations were generated, whereas for the
pseudo-bond torsion angle distribution the stretch was

CH3 CH3

C-CO-NH-CH-CO-NH-C--CO-NH-C

and 36 X 36 X 36 XK 36 conformations were generated.

The pseudo-bond bend angle and the energy of each
conformation were then evaluated (the energy did not in-
clude constant energy terms). After this each conformation
was given a Boltzmann weight (kT = 0.6 kcal/mol, 1 cal =
4.184 J). The pseudo-bond bend angle range was divided
into one-degree-wide bins, and for each bin the sum of the
corresponding weights was evaluated and thus, after nor-

malization, the distribution was obtained.
The other distribution crucial to the behavior of the chain

is that of the torsion angle among four consecutive Ca,'s.
The same kind of analysis depicted above for the pseudo-
bond bend angle has been performed for this variable.
However, we retained only the 15,503 lowest energy gen-

erated structures to match the number of available torsion
angles in the database.
As glycines and prolines exhibit distinct conformational

propensities, distributions of bend and torsion angles were

generated for all the stretches that had a proline or a glycine
at the first, second, third, or fourth position. Although the
distributions are different from the global ones, this obser-
vation does not allow a clear-cut partition of the range of
possible values. For this reason we did not discriminate
between glycines and prolines.

C<,M C. chains

The Ca-CP bond orientation is obviously related to the
orientation of the side chains with respect to the main chain
of the protein. Aiming at maintaining a minimal description
of the protein we may ask whether Cp's may be introduced
into the Ca chain, so that the torsion angles around the
Ca-C, pseudo-bond still remain the only degrees of free-
dom of the chain, but, nevertheless, side-chain parameters
are introduced through the C. atom rather than through Ca.
This possibility would allow for a more realistic description
of each amino acid with a very limited increase in compu-

tational load. As the Ca-Cp distance is almost constant, we
may easily define the position of the Cp with respect to the
main chain in terms of the bend angle defined by Cai-
Cai+ -Cpi,j and the torsion angle defined by Cai,j_iCai,
Cai+l-Cpi+ . Because the latter may depend on the local
conformation of the chain, the offset of the same angle with

respect to the Cac_-CarCai± iCai+2 dihedral angle (i.e.,
the dihedral angle obtained by the subtraction O(Cai- I-Cai-
Cai+ l-Cj9i+i - 0(Cai1_iCao42aC+i1Cao+2)) appears to be
a more useful quantity to monitor (Fig. 1). The theoretical
distribution was computed in the same fashion as described
above.
One may also wonder to what extent the C3 position is

representative of the real side chain. To address the issues of
the center and distribution of the global steric hindrance of
a group of atoms, we will use some concepts used in
classical mechanics to describe mass distributions. To ac-
complish the parallel with classical mechanics we assign to
each atom i a "steric mass" (expressed in arbitrary units)
that is equal to its steric hindrance as calculated using its
van der Waals radius, a1, i.e., mi = 4fnai3/3. It must be clear
that no real mass is involved in this definition, and the word
"mass" is used for consistency with the formalism devel-
oped for the description of distributions of real masses. The
word "weight" might be equally appropriate for the purpose
of the computation of the center of volume; however, the
idea of mass leads easily to that of density, which will be
used later. Note that a similarly ad hoc defined center of
mass, rather than the real center of mass, has been used
previously by Kolinski and Skolnick (1994a) to locate cen-
ters for side-chain interactions.

Given these definitions we can compute for every side
chain in a defined conformation the center of steric mass:
R = Ej mir /M, where -i is the position of the ith atom and
M = z mi is the global steric mass of the residue (Fig. 1).
The angle between the vectors joining C. to Ca and the
center of steric mass to C, gives an indication of how close
the two directions are.
We have computed the distribution of the angle, making use

of our restricted protein structures set. Because hydrogen or
deuterium atoms are not included in most of the structures
these atoms were not included in the calculation for consis-
tency. In addition, incomplete side chains have not been con-
sidered. We have also computed the distribution of the pseudo-
bond bend angle and torsion angle offset for the center of steric
mass, in the same fashion as described for the Co carbon.
The choice of a steric mass might seem arbitrary, but we

believe it is suited to the purpose of modeling because it is
precisely the steric hindrance that often makes it possible to
select regions of conformational space. We have used the
following average values for the steric mass of each atom
(in arbitrary units):

C steric mass = 28.73 (van der Waals radius = 1.9 A)
N steric mass = 14.14 (van der Waals radius = 1.5 A)
O steric mass = 11.49 (van der Waals radius = 1.4 A)
S steric mass = 26.52 (van der Waals radius = 1.85 A)

C. and ellipsoids

The previous discussion directly introduces the issue of a
more realistic representation of the side chains or (at an
increasing level of approximation) parts of the side chains.
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The idea of modeling small molecules with ellipsoids is
not new and has proved useful in the field of molecular
simulation of liquids (Allen and Tildesley, 1987). Often,
when a small molecule is depicted with a space-filling model,
it has a curved and elongate shape. The most simple shape that
can be fit to such a picture is a rotational ellipsoid.
To build a rotational ellipsoid that can suitably represent

a set of atoms we impose the requirement that both the
original set of atoms and the ellipsoid representing them
have roughly the same steric hindrance, the same position,
and the same radial distribution around any axis in space, in
a sense that is defined below.

With this aim, we defined in the previous section the
steric mass of an atom as the volume it occupies in space,
according to its van der Waals radius. When such a defini-
tion of mass is given, other properties may be easily de-
rived, besides the center of steric mass. For the purpose of
deriving the ellipsoid parameters, we assume the steric mass
of each atom to be uniformly distributed over the volume. It
must be clear that this assumption does not have or hint at
any physical meaning, but it just serves the purpose of
deriving the dimensions of the ellipsoid. Dealing with a fit
involving surfaces, instead of volumes, would probably not
require any similar assumption but would certainly lead to
much more complex equations, with probably little advan-
tage in the present context.
The asymmetrical distribution of point masses around

their center of mass may be suitably represented via the
inertia tensor, whose definition is the following (Goldstein,
1965):

I = >mj[.r 1 -ri)- iri)]

the same center of steric mass, and the same (rotationally
averaged) steric mass inertia tensor as the original set of
atoms.
We assume the steric mass of the ellipsoid, defined as

before as being equal to the volume the ellipsoid occupies in
space, to be uniformly distributed in space. The center of
steric mass is obviously the center of the ellipsoid itself,
whereas the steric mass momenta of inertia along the axis of
rotation and any orthogonal axis may be obtained by direct
integration of the radial distribution of steric mass.

It turns out that for a rotational ellipsoid whose mass M is
uniformly distributed within an ellipsoidal surface with the
major axis of length b, along the rotation axis, and the minor
axis of length a, we have the following properties:

i) the equation representing its surface is

(rR) * - r(rR) = 1,

where R is the position of the ellipsoid center of mass, and
the matrix y- l may be expressed in terms of the length of
the axes and the unit vector iv along the rotation axis:

7' b2VV+a2(1-iV).
When R coincides with the origin and iv coincides with

the z axis the equation for the surface reduces to the familiar
form

x2 + y2 z2
a2 +1

ii) its mass density is

where the dot indicates a scalar product, 1 is the unit matrix,
and the dyadic notation (ab)ij has the following meaning:
(ab)ij = aibj. In the present context we will use the word
"tensor" as synonymous with "matrix," although in certain
respects the two words have different meanings. We keep
the wording "inertia tensor" to be consistent with classical
mechanics textbooks. Besides the dynamical properties that
render the inertia tensor so important in the field of classical
mechanics, we note that it also possesses a powerful geo-
metrical meaning, as it condenses all the information about
radial distribution of mass around any axis. Together with
the coordinates of the center of mass, it is therefore suited to
representing the position and the dispersion of a distribution
of mass.
The inertia tensor can be diagonalized to obtain the

principal axis. The three eigenvalues one obtains, even if
they may incidentally be coincident, are the inertia mo-
menta with respect to a set of three orthogonal axes whose
directions are given by the correponding eigenvectors.
Once the center of steric mass and the steric mass inertia

tensor of the original set of atoms have been obtained, we
choose, as a representation of the original set of atoms, the
rotational ellipsoid that possesses the same steric mass,

M
= (4wl/3)ba2'

iii) the momenta of inertia with respect to the axis of
rotation (Ip) and any orthogonal axis through the center
of mass (I) are

Jb a NA(l-z2/b2) 2
Ip =p d& r227Trr d r = Ma2

-b O

with r = + y2

and

Jb C2lr a (1-Z2/ b2)

I,= p dzJ dlJ r(r2sin i92 + z2) dr
-b JO JO

= a2 + 1 b2)

with r = Ax +y2 + 2

respectively.
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Because the inertia tensor of the original distribution of
steric mass, contrary to that of a rotational ellipsoid, pos-
sesses in general three different eigenvalues, we first have to
average the two larger eigenvalues to obtain an average
momentum of inertia that is transverse with respect to the
remaining axis, i.e., the axis about which rotational average
has been performed. Then we can simply equate i) the steric
mass, ii) the steric mass parallel and transverse momenta of
inertia, and iii) the direction of the rotation axis for the
original set of atoms and the ellipsoid, so that the rotational
ellipsoid is equal, under these three respects, to the original
set of atoms.
We may clarify the procedure and its implications by

considering two atoms with a van der Waals radius r, placed
at a distance of 3/2 r from each other (Fig. 2). The global
steric mass is M = 2(4 rr/3)r-3. The center of steric mass of
the system is placed at the midpoint of the vector joining the
two atomic centers of steric mass. The steric mass inertia
tensor may be easily calculated by taking a Cartesian coor-
dinate reference system that has the z axis aligned with iv
and an origin coincident with the center of steric mass. Each
entry of the steric mass inertia tensor is composed of two
terms, one describing the atoms as steric point masses, and
the other describing the steric mass distribution of each
atom. In this simple case the inertia tensor is the following:

| [4) 5 ]

I= 0

0

0

[(4) 5 ]

0

0

0

2

5

The three diagonal elements of the tensor are obviously
the eigenvalues, two of which are coincident. If the Carte-

FIGURE 2 A two-atom system represented as a rotational ellipsoid.

sian coordinate system were chosen differently, then we
would also have nonzero off-diagonal terms, and diagonal-
ization of the matrix would be required. Note that the
smaller eigenvalue is associated with the direction of elon-
gation. If the two larger eigenvalues were not coincident we
would have simply taken their average. Now we consider
which ellipsoid would better fit our two-atom system, ac-
cording to the previous requirements. If a and b are the
minor and major ellipsoid axes, respectively, and the major
axis is along the rotation axis, then i) the steric mass of the
ellipsoid is M and the center of the ellipsoid coincides with
the center of steric mass of the two atoms; ii) from

Ip(=M5a2) =M r2

we obtain a = r; iii) from

It (= M(5 b2 + a)) = M[(4) ]

we obtain b = 1.95r. One can appreciate the fair fit of the
ellipsoid to the two atoms (Fig. 2). The fit is going to be less
satisfactory with an increasing degree of asymmetry, but
this representation should work fairly well with the short
(with respect to bond lengths and atomic radii) chains of
amino acids.
We have tested whether such a procedure gives a reason-

able representation of amino acids that are quite far from
possessing any rotational symmetry.
The issue has been preliminarily addressed by scanning

the set of 75 high-resolution protein structures and consid-
ering the statistical distributions that are obtained for

i) the dimensions of the ellipsoids representing each
amino acid;

ii) the angle between the rotation axis of the ellipsoid and
the C. center of steric mass direction, or the Ca,-CP direc-
tion, which should reasonably represent the direction of the
side chain in space.

The latter parameter, however, has a different relevance,
depending on the asymmetry of the ellipsoid, which ulti-
mately reflects the directionality of the side chain.

All chains for which atoms were missing were excluded
from the count for consistency, and hydrogen or deuterium
atoms were not taken into account, as most of the database
includes only heavy atoms. More accurate dimensions
should therefore include some additional length corrections
for the hydrogen atoms.
A good test for the usefulness of ellipsoids for molecular

simulation is to write an interaction potential that is able to
reproduce energy terms obtained with all-atom models.
Developing a force field for ellipsoid-ellipsoid interactions
may be a complex task because of the variables (axis
lengths and orientations with respect to the vector joining
the centers of mass for both ellipsoids) that determine the
energy of the interaction, whichever interaction model is
assumed. The modeling of ellipsoid-ellipsoid interactions is
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definitely beyond the scope of the present work. However,
based on simple geometric and physical considerations, we
have written two simple forms for the interaction potential
that give reasonable results for simple situations. We focus
on the van der Waals potential, as this is often used to reject
possible conformations in systematic conformational
searches and because this presents the major differences
with respect to spherical models of side chains. More de-
tailed force fields accounting for backbone and side-chain
interactions have appeared recently in the literature (Gerber,
1992; Kolinski and Skolnick, 1994a).
We have modeled the van der Waals interaction of two

ellipsoids with a Lennard-Jones potential retaining the un-

derlying physical interaction. The spherical 6-12 potential
between two atoms i and j may be easily generalized to an

ellipsoidal potential by substituting ri2./r2 with -jy- ij.

According to this picture we have assigned the following
functional form to the interaction potential, which uses an

average ellipsoid given by a simple function of the two

interacting ellipsoids:

Vj~j = E1j((riiyi rij 6r

The choice of Eii and l defines the Lennard-Jones poten-
tial properties. If the tensor yij or Eij is made to depend on

the orientation of r , then isopotential contours may possess

any shape. In the simplest choice, which follows the original
idea of Berne and Pechukas (1972), the average matrix,
which defines isopotential energy surfaces, is obtained as a

simple function of the corresponding matrices of the two

interacting ellipsoids, i.e., yij 1 = k2(,y1 + yj)-1. The expres-

sion stems from the observation that, when k is set to 1,
exp(--,4 ) is proportional to the overlap of two gaus-

sian ellipsoidal mass densities defined by yi and y[1

(Berne and Pechukas, 1972). For this reason we will refer to
this force field as the "overlap model," although it is not

strictly coincident with the model of Berne and Pechukas

(1972). This choice is very simple in form, and the overlap
allowance is set by the value of k, which divides the linear
dimensions of the repulsive core of the ellipsoid, maintain-
ing its shape. For two equal interacting ellipsoids a choice of
k = 0.707 would set the dimensions of the ellipsoid two

times larger than the original ones. This would be the usual
choice for two interacting spheres. This potential choice is
bound to break down when ellipsoids of largely different
sizes are made to interact.

Optimal values for Eij and k were determined from the set

of five high-resolution structures. Ellipsoids representing
the side chains were obtained from the actual positions of
the side-chain atoms. A value of 0.81 for k was determined
by the analysis of the dependence of both total energy and
number of clashes (positive energy contacts) on k in the set

of five high-resolution structures after energy minimization.
When one or both of the interacting residues were aromatic,
this value was further multiplied by a factor of 1.09 or 1.19,
respectively. With this choice no clash is found.

Eij has been chosen to be proportional to the volume of
both the interacting ellipsoids, and its absolute value was

determined by a best fit to all residue pair van der Waals
energies above 0.001 kcal/mol. For two interacting alanines

Eij is 1.21 kcallmol, not too far from the value of 0.72
kcallmol found in united atom force fields like, for instance,
GROMOS (Van Gunsteren and Berendsen, 1987). A list of
the energy parameters Eij for all pairs of standard amino
acids is given in Table 1.

Other functional forms have been proposed that can much
more faithfully reproduce the interaction energy of clusters
of atoms (Gay and Berne, 1981) but require, on the other
hand, quite a larger computational effort. A problem in
attaining a faithful representation of side chain-side chain
van der Waals interaction is that small adjustments of the
orientations or dimensions of the ellipsoids may turn high-
energy clashes into favorable interactions. One should

TABLE I Energy parameter e, (kcal/mol) for standard amino acid pairs for the "overlap model"

ALA CYS ASP GLU PHE HIS ILE LYS LEU MET ASN PRO GLN ARG SER THR VAL TRP TYR

ALA 1.21 1.72 1.88 2.39 3.63 2.74 2.72 2.90 2.74 2.94 1.95 2.09 2.47 3.64 1.26 1.79 2.12 4.74 3.74

CYS 1.72 2.45 2.67 3.41 5.16 3.90 3.87 4.12 3.90 4.18 2.77 2.98 3.52 5.18 1.79 2.54 3.01 6.74 5.32

ASP 1.88 2.67 2.91 3.71 5.63 4.25 4.23 4.50 4.26 4.56 3.02 3.25 3.84 5.65 1.95 2.77 3.28 7.35 5.80

GLU 2.39 3.41 3.71 4.74 7.18 5.42 5.39 5.74 5.43 5.82 3.86 4.15 4.89 7.21 2.49 3.54 4.19 9.38 7.40

PHE 3.63 5.16 5.63 7.18 10.88 8.21 8.17 8.69 8.23 8.81 5.84 6.28 7.41 10.92 3.78 5.36 6.35 14.21 11.21

HIS 2.74 3.90 4.25 5.42 8.21 6.20 6.16 6.56 6.21 6.65 4.41 4.74 5.60 8.25 2.85 4.05 4.79 10.73 8.46

ILE 2.72 3.87 4.23 5.39 8.17 6.16 6.13 6.52 6.18 6.61 4.39 4.72 5.57 8.20 2.84 4.02 4.76 10.67 8.41

LYS 2.90 4.12 4.50 5.74 8.69 6.56 6.52 6.94 6.58 7.04 4.67 5.02 5.92 8.73 3.02 4.28 5.07 11.35 8.96

LEU 2.74 3.90 4.26 5.43 8.23 6.21 6.18 6.58 6.23 6.67 4.42 4.75 5.61 8.27 2.86 4.05 4.80 10.75 8.48

MET 2.94 4.18 4.56 5.82 8.81 6.65 6.61 7.04 6.67 7.14 4.73 5.09 6.00 8.85 3.06 4.34 5.14 11.51 9.08

ASN 1.95 2.77 3.02 3.86 5.84 4.41 4.39 4.67 4.42 4.73 3.14 3.37 3.98 5.87 2.03 2.88 3.41 7.63 6.02

PRO 2.09 2.98 3.25 4.15 6.28 4.74 4.72 5.02 4.75 5.09 3.37 3.63 4.28 6.31 2.18 3.09 3.66 8.20 6.47

GLN 2.47 3.52 3.84 4.89 7.41 5.60 5.57 5.92 5.61 6.00 3.98 4.28 5.05 7.45 2.58 3.65 4.33 9.68 7.64

ARG 3.64 5.18 5.65 7.21 10.92 8.25 8.20 8.73 8.27 8.85 5.87 6.31 7.45 10.97 3.79 5.38 6.37 14.27 11.26

SER 1.26 1.79 1.95 2.49 3.78 2.85 2.84 3.02 2.86 3.06 2.03 2.18 2.58 3.79 1.31 1.86 2.20 4.93 3.89

THR 1.79 2.54 2.77 3.54 5.36 4.05 4.02 4.28 4.05 4.34 2.88 3.09 3.65 5.38 1.86 2.64 3.13 7.00 5.52

VAL 2.12 3.01 3.28 4.19 6.35 4.79 4.76 5.07 4.80 5.14 3.41 3.66 4.33 6.37 2.20 3.13 3.70 8.29 6.54

TRP 4.74 6.74 7.35 9.38 14.21 10.73 10.67 11.35 10.75 11.51 7.63 8.20 9.68 14.27 4.93 7.00 8.29 18.56 14.64

TYR 3.74 5.32 5.80 7.40 11.21 8.46 8.41 8.96 8.48 9.08 6.02 6.47 7.64 11.26 3.89 5.52 6.54 14.64 11.55
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choose an interaction potential depending on the purposes
of the simulation. It is worth noting that the expression
rRy- r is equal to (rld)2, where r is the modulus of 'r and d
is the distance of the ellipsoid surface from the origin in the
direction of vector r. A potential aiming at maintaining the
repulsive cores of the ellipsoids must then take into consid-
eration the ratio rij/(di + dj) for the Lennard-Jones potential.
Indeed, we have chosen this expression for a more accurate
energy evaluation. Note, however, that for very asymmet-
rical ellipsoids, clashes might occur in points that do not lie
on the vector joining the two centers of mass. The relation-
ship between rijyij rij and yJ and is derived:

rj Yi ryjrij )
Q 1 /2+@C,jrij 1 1/21

Because -y1 depends on the orientation of r, isopotential
contours are not necessarily rotational ellipsoids. Further-
more, here a scaling factor k, which divides the linear
dimensions of ellipsoids i and j, sets the tolerance to pos-
sible overlaps. A value of 1.12 for k was determined as
described for the "overlap model." If one or both of the
interacting residues are aromatic residues, k is further mul-
tiplied by a factor of 1.09 or 1.20, respectively. Eij should
account for the dimensions and mutual orientation of the
interacting ellipsoids. E1j has been chosen to be proportional
to the cross sections of both the ellipsoids in the direction
defined by their centers of steric mass. In this way if two
equal ellipsoids have major and minor axes equal to 2 and
1, respectively, the interaction energy of the parallel ar-
rangement is four times that of the sequential arrangement
(Fig. 3). E,j was determined as described above, and its value
for two interacting alanines is 2.28 kcallmol, higher than
expected and possibly hinting at some inadequacy of the
force field. We will refer to this second model as the
"repulsive core model." Fig. 3 better illustrates the choices
for ellipsoid-ellipsoid van der Waals potential.
A problem that is encountered in determining optimal

values for k and Eij is that energy minimization changes both
parameters in a consistent way. To avoid clashes and to fit
the all-atom energy, both k and Eij must be set slightly larger
than they would be for unminimized structures. In other
words, minimized structures are consistently more compact
and stable than the structures found in the database, and
residue-residue favorable contacts are possibly overesti-
mated.

Finally, a test was performed on the same set of five
high-resolution proteins using spheres instead of ellipsoids
to represent side chains. The radius of the sphere (r)
was chosen so as to give the same volume as the cor-
responding ellipsoid (i.e., with the previous notation,
4m3/3 = 4'irIpIt/3). The scaling factor k = 1.07, analogous
to the "overlap model," was determined to avoid clashes.
The energy parameters were chosen to be proportional to
the volume of the interacting spheres, and their absolute
values were chosen to give the best fit to the corresponding
AMBER energies. In practice spherical model Eij may be

A

B

r2 ci:

00O
FIGURE 3 Ellipsoid-ellipsoid interaction potential. (a) On the left the
repulsive cores of two interacting ellipsoids are drawn. On the right the
zero isopotential curve is drawn for the "overlap model" (dashed line) and
for the "repulsive core model" (solid line). (b) On the left the repulsive
cores of two interacting ellipsoids are drawn. On the right the cross section
in the direction defined by the two ellipsoid centers is drawn.

obtained by multiplying by a factor of 1.73 the correspond-
ing values reported in Table 1.

RESULTS AND DISCUSSION

C. chains

The distributions of the pseudo-bond bend angle and torsion
angle, when calculated on very short stretches of a polypep-
tide chain (see Methods), show definite conformational
preferences (Figs. 4 and 5).
The bend angle distribution (range 840 to 1440) may be

approximately fitted by a gaussian function peaked at a
value of 113.51° with a width of 35.16° (twice the standard
deviations). The distributions obtained in this way reflect by
definition local interactions, so that features that are differ-
ent in the database distributions are attributable to nonlocal,
cooperative, or long-range interactions, like those that may
be correlated with helical structures. Indeed, the pseudo-
bond bend angle distribution found in the database (15,663
bend angles) is very similar to the theoretical one (Fig. 4),
except for the intense, sharp peak at approximately 900C,
i.e., the characteristic value of a-helical secondary struc-
tures. It is worth noting, however, that the distribution may
be fitted by two gaussian curves centered at 91.10 and
117.2° and having widths equal to 6.50 and 33.00, respec-
tively. It is apparent that the second peak has parameters
very close to the theoretical single-peak distribution and
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FIGURE 4 C.i-Ci+ I-Ci+2 pseudo-bond bend angle distribution. The
counts in the database are plotted (thick solid line) together with the
theoretically computed ones (thin solid line). The width of the bins is one
degree.

therefore is compatible with locally energy-stabilized con-
formations, although the contribution of other secondary
structure elements stabilized by long-range interactions is
expected to fall in the same range of values.
The database range of pseudo-bond bend angle is slightly

larger than the calculated one but is limited, reinforcing the
idea of a rather rigid pseudo-bond structure of the chain,
even though there are six bonds intervening among three
consecutive Ca'S.
The behavior of the pseudo-bond torsion angle appears

much less defined. Although a structure in the calculated
distribution is definitely present, the premises for reducing
the number of chain moves on a lattice, or any other kind of
grid, are greatly lessened. Only a small region of the histo-
gram (around -30°) is poorly populated, so that the reduc-

400-

3002

CD)
E200-
0

Torsion Angle

FIGURE 5 C-i-C-i+ -C-i+2-Cai+3 pseudo-bond torsion angle distribu-
tion. The counts in the database are plotted (thick solid line) together with
the theoretically computed ones (thin solid line). The width of the bins is
one degree.

tion in searchable conformational space is of little advan-
tage (Fig. 5).
The presence of an intense and sharp peak around 500 in

the distribution computed on the database (15,503 torsion
angles) is again related to a-helical secondary structures.
When the theoretical distribution is scaled properly to take
into account the absence of the peak due to a-helices, which
contributes roughly 4000 to 5000 counts, another difference
is apparent around 2000 that may be related to ,B-sheets.
However, the less strict geometrical requirement of (3-sheet
versus a-helical conformation makes this peak broad and
less readily identifiable. Note that the asymmetrical distri-
bution of dihedral angles may introduce a bias toward, for
instance, right-handed a-helices over left-handed ones, a
result that cannot be obtained just by distance bias or
restraints.

Ca chains with C1i's
The theoretical distribution of the pseudo-bond bend angle
defined by C,i-Cai+,1-Cpi+j shows a sharp peak, centered
at 1230 (Fig. 6), and although the distribution is skewed, the
standard deviation from the average value (1180) is very
small (60). The corresponding distribution in the database is
somewhat broader, but it is still skewed, with a maximum
at 1250.
The offset of the torsion angle Cai_ -CaiaCi+i-CIi+i

with respect to the main-chain torsion angle (defined by
Caii Iai-Cai+l-Cai+2) does not show a similar well-
defined behavior, but the range of values it can assume is
not so large as to prevent any attempt to maintain a rigid
geometry for the Cp carbon. The theoretical distribution is
bimodal with two peaks roughly at 2100 and 2500, which
are the typical values for extended and a-helical conforma-
tions, respectively, and covers an overall range of approx-
imately 600 (Fig. 7). The same features, but again with a
broader peak shape, are exhibited by the distribution found

4000.

3000.
CD
m 2000-0
0

1000-

60 120

Bend Angle
180

FIGURE 6 Caj4C,j+-C,3j+I pseudo-bond bend angle distribution. The
counts in the database are plotted (thick solid line) together with the
theoretically computed ones (thin solid line). The width of the bins is one
degree.
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FIGURE 7 Distribution of Ca.ij,i++ICci+2-Cm3i+2 pseudo-bond torsion
angle offset with respect to the Cai--Cai+ -Caji+2-Cai +3 torsion angle. The
counts in the database are plotted (thick solid line) together with the
theoretically computed ones (thin solid line). The width of the bins is one

degree.

in the database. Hence we are able to conclude that, assum-

ing a fixed Ca,,f-C3 length, for a simplified description of
polypeptide chains, the position of Cp carbons with respect
to the corresponding Ca may be described simply by a

pseudo-bond bend angle and a torsion angle offset with
respect to the main chain constituted by the Ca'5s. This is the
usual way atoms are specified when modeling molecules
and assuming rigid bonds and bend angles. When the posi-
tion of the C,, carbon is specified with respect to the Ca
trace by using an average pseudo-bond bend angle of 125°
and an average pseudo-bond torsion angle of 245°, the
average root mean square deviation from the actual position
of the C,, carbon in the set of five high-resolution structures
is 0.50 A. This figure is higher than that obtained by Rey
and Skolnick (1992), who, however, used amino acid-de-
pendent parameters to reconstruct the position of the Cp
from the local coordinate system defined by three consec-

utive Ca's. The two approaches, albeit similar, are not
equivalent, because the pseudo-bond bend angle is fixed in
our approach.
We have extended the analysis further by investigating

whether Cp's may adequately represent the side chains of
residues. We have examined the angle between the Ca-C,3
bond and the vector joining Ca and the center of steric mass
(see Methods) to check for the orientation of the bond. The
angle shows a trimodal distribution and covers an approx-

imate range of 50°, as can be seen from Fig. 8.
The structure of the distribution is related to the number

of rotatable bonds in the side chain, rather than to the
specific conformation; i.e., for each side chain the angle
between the Ca-CP bond and the vector joining Ca and the
center of steric mass exhibits a limited standard deviation,
as reported in Table 2.
The length of the vector joining Ca and the center of

steric mass was also evaluated. Its value obviously depends
on the examined residue. The average values together with

600
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FIGURE 8 Distribution of the angle between the vector joining Caf to the
center of steric mass and the bond C,-C,3. The counts in the database are
plotted in one-degree bins.

the standard deviations are reported in Table 2. Such lengths
should be taken into account when transferring residue
properties on the Cp carbon to represent properly not only
the orientation but also the position of the side chain. It is
worth noting that the standard deviations of the Ca center of
steric mass length are small also for long side chains,
because folded or kinked conformations, which should ex-

hibit large deviations, are not very common. The same

analysis was performed after also including the Ca carbon in
the side chain, as this is expected to reduce the angle

TABLE 2 Statistics of the center of steric mass

Length (A)

Angle Ca C,
Residue (degrees) not included included Counts

ALA 0.00 (0.0) 1.53 (0.02) 0.76 (0.01) 1355
CYS 23.2 (1.3) 2.03 (0.05) 1.34 (0.03) 329
ASP 28.1 (1.6) 2.24 (0.05) 1.65 (0.04) 945
GLU 27.2 (9.7) 2.83 (0.24) 2.24 (0.19) 872
PHE 42.0 (2.7) 3.41 (0.07) 2.98 (0.06) 610
HIS 39.4 (2.4) 3.01 (0.07) 2.51 (0.06) 370
ILE 16.6 (4.5) 2.34 (0.14) 1.87 (0.11) 815
LYS 29.7 (10.2) 3.29 (0.24) 2.69 (0.20) 1013
LEU 27.6 (2.7) 2.62 (0.07) 2.09 (0.06) 1265
MET 27.6 (11.2) 2.95 (0.27) 2.35 (0.21) 302
ASN 28.7 (1.8) 2.27 (0.06) 1.69 (0.04) 691
PRO 41.2 (0.9) 1.88 (0.03) 1.41 (0.02) 703
GLN 27.5 (9.9) 2.85 (0.25) 2.26 (0.20) 511
ARG 29.4 (13.3) 3.78 (0.30) 3.20 (0.26) 638
SER 12.9 (0.6) 1.71 (0.03) 1.00 (0.02) 1121
THR 15.1 (1.0) 1.94 (0.04) 1.37 (0.03) 931
VAL 13.0 (1.4) 1.97 (0.03) 1.48 (0.02) 1100
TRP 44.3 (8.1) 3.87 (0.19) 3.50 (0.17) 228
TYR 43.7 (2.8) 3.56 (0.08) 3.13 (0.07) 593

Length of the vector joining C, to the center of steric mass (calculated
alternatively including or not the C,,, carbon). The angle between the latter
vector with the bond C,,-C, is given for each residue. Averages are given
with root mean square deviations in parentheses. Counts for each residue
are listed in the last column.
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between the longitudinal axis of the rotational ellipsoid,
which represents the side chain, and the Ca-CI3 (and Ca
center of steric mass) direction (see next section).

Finally, as a consistency check we have monitored the
distributions of the pseudo-bond bend and torsion angle
offset of the residue centers of steric mass with respect to
the main chain to see if they match the corresponding
distributions obtained for the C.'s. As could be expected,
both parameters show a much less well defined behavior
than the corresponding quantities involving the Cp's, but the
distributions are definitely similar as far as the average
values are concerned, with an overall increase in dispersion
(Figs. 9 and 10).

C. and ellipsoids

A prerequisite for a faithful representation of side chains as
ellipsoids is to obtain reasonable average values for the
parameters of the ellipsoids. It is also necessary that
the root mean square deviations of the distributions of these
values not be so large as to devalue the significance of the
representation.
The distributions of the parameters for each amino acid

are not shown here, but they are all approximately bell
shaped, with more details for the longer side chains.
A list of the parameters, together with root mean square

deviations, is reported in Table 3. It should be noted that the
root mean square deviation of the values of the minor axis
length are very small, whereas those for the major axis
length are somewhat larger. The largest side chains show
the highest variability, as expected. The angles between the
major axis of the ellipsoid and the vector joining the center
of steric mass and the Ca (or the CO and the Ca) are rather
large, as judged by Table 3, so that the latter vectors cannot
safely approximate the ellipsoid direction. Nevertheless,
when Ca's are included in the calculation of the center of
steric mass, the angle between the major axis of the ellipsoid
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FIGURE 9 CaiCai+ 1-Cmj+, pseudo-bond bend angle distribution (CM
is the center of steric mass). The counts in the database are plotted in
one-degree bins.
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FIGURE 10 Distribution of C.i-Ci+1-C.i+2-CMi+2 pseudo-bond tor-
sion angle offset with respect to the Cai-Ci+I-Caj+2-Ci+3 torsion angle
(CM is the center of steric mass). The counts in the database are plotted in
one-degree bins.

and the Ca-C3 direction (and to a lesser extent also the Ca
center of steric mass direction) remains within a very lim-
ited range (0-33°).
By taking into account the distributions of the center of

steric mass bend and torsion angles with respect to the main
chain, one could represent the polypeptide chain as a main
chain made by Ca's with attached ellipsoids, whose centers
of steric mass are located at a fixed length from the Ca,
depending on the residue, and in a direction defined by the
average bend angle and torsion angle of the Ca-Co (Ca
center of steric mass) pseudo-bond, with the rotation axis
along the Ca-Cp (Ca center of steric mass) pseudo-bond.
We did not elaborate further on this model, because it

could be better adjusted, depending on specific practical
applications. Rather we investigated another necessary pre-
requisite for putting ellipsoids into use, i.e., the ellipsoid-
ellipsoid interaction potential function. We have tested the
two approximate force fields that were described in Meth-
ods on the set of five high-resolution protein structures and
on the homeodomain of thyroid transcription factor 1.
The results that were obtained with the two force fields

are very similar. Both the scaling factors k are very close to
the corresponding values for spherical interacting atoms
(k = 0.81 versus 0.71 for the "overlap model," and k = 1.12
versus 1 for the "repulsive core model"), i.e., in both models
the linear dimensions of the calculated ellipsoids have to be
scaled down by approximately 10%, which is not a large
amount, to avoid positive energies. Moreover, all of the
considered molecules exhibit energy minima located even
closer the corresponding spherical symmetry k values.
These results point to the conclusion that ellipsoids are able
to faithfully reproduce the shapes of amino acids. A some-
what less satisfactory conclusion is reached when the ener-
gies that are computed by AMBER force field and the two
ellipsoid models are compared (Fig. 11). The value of the
energy parameter Ejj is, in both models, larger than ex-
pected. The explanation for this is that most probably the
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TABLE 3 Statistics of the ellipsoids representing side chains

Residue

ALA
CYS
ASP
GLU
PHE
HIS
ILE
LYS
LEU
MET
ASN
PRO
GLN
ARG
SER
THR
VAL
TRP
TYR

ALA
CYS
ASP
GLU
PHE
HIS
ILE
LYS
LEU
MET
ASN
PRO
GLN
ARG
SER
THR
VAL
TRP
TYR

(X)
2.55 (0.02)
3.15 (0.05)
3.23 (0.05)
3.88 (0.22)
4.18 (0.05)
3.96 (0.06)
3.46 (0.11)
4.54 (0.27)
3.48 (0.06)
4.14 (0.29)
3.25 (0.06)
2.94 (0.02)
3.89 (0.23)
5.12 (0.35)
2.70 (0.03)
2.87 (0.04)
2.79 (0.03)
4.66 (0.12)
4.43 (0.05)

1.90 (0.00)
2.76 (0.02)
2.66 (0.02)
3.23 (0.06)
3.60 (0.02)
3.39 (0.03)
3.34 (0.13)
3.91 (0.21)
2.77 (0.02)
3.57 (0.21)
2.68 (0.02)
2.91 (0.03)
3.24 (0.07)
4.51 (0.28)
2.28 (0.02)
2.72 (0.03)
2.97 (0.04)
4.23 (0.03)
3.87 (0.02)

It
(A)

1.90 (0.00)
2.01 (0.01)
2.05 (0.02)
2.09 (0.07)
2.40 (0.01)
2.19 (0.02)
2.33 (0.04)
2.09 (0.09)
2.31 (0.02)
2.20 (0.09)
2.07 (0.02)
2.22 (0.01)
2.10 (0.08)
2.21 (0.11)
1.93 (0.01)
2.15 (0.01)
2.37 (0.01)
2.59 (0.05)
2.36 (0.01)

1.90 (0.00)
1.88 (0.00)
2.00 (0.01)
2.05 (0.02)
2.39 (0.01)
2.14 (0.01)
2.15 (0.04)
2.05 (0.07)
2.37 (0.01)
2.16 (0.07)
2.03 (0.01)
2.02 (0.01)
2.08 (0.02)
2.14 (0.09)
1.77 (0.00)
1.93 (0.01)
2.01 (0.01)
2.52 (0.01)
2.34 (0.01)

'CB
(degrees)

0.0 (0.0)
14.8 (1.4)
10.5 (2.1)
10.2 (8.5)
13.4 (1.6)
14.3 (2.1)
32.4 (12.8)
10.8 (7.1)
3.7 (2.7)

13.0 (8.5)
10.8 (2.6)
30.8 (1.7)
10.1 (9.0)
13.5 (6.5)
9.8 (0.5)

20.5 (1.6)
30.3 (23.5)
20.2 (6.4)
14.0 (1.6)

43.9 (3.0)
39.5 (2.7)
22.0 (15.6)
24.5 (1.7)
28.8 (3.4)
57.8 (7.7)
19.9 (11.2)
52.0 (23.5)
26.1 (13.1)
37.8 (4.5)
66.9 (1.0)
21.3 (16.2)
22.8 (9.6)
57.6 (3.9)
69.0 (2.2)
88.6 (1.2)
32.7 (9.3)
23.6 (1.8)

,&CM
(degrees)

0.0 (0.0)
38.0 (2.7)
38.4 (3.3)
37.0 (18.2)
55.4 (4.2)
53.6 (4.2)
44.6 (16.2)
38.8 (17.7)
30.0 (4.5)
37.6 (21.0)
39.2 (4.0)
72.0 (2.5)
37.1 (18.9)
39.5 (18.8)
22.7 (1.0)
33.6 (1.9)
35.8 (20.0)
59.8 (16.9)
57.7 (4.2)

67.0 (3.9)
67.6 (4.1)
47.7 (24.1)
66.5 (4.4)
68.0 (5.3)
67.8 (9.6)
46.1 (20.7)
56.6 (21.9)
46.4 (24.4)
66.4 (6.0)
72.2 (1.5)
47.0 (24.4)
47.1 (19.5)
70.5 (4.3)
79.8 (2.8)
88.2 (1.6)
67.2 (21.0)
67.3 (4.5)

Counts

1355
329
945
872
610
370
815
1013
1265
302
691
703
511
638
1121
931
1100
228
593

1355
329
945
872
610
370
815
1013
1265
302
691
703
511
638
1121
931
1100
228
593

Major (Ip) and minor (I) axis values for ellipsoids representing amino acid
side chains. The values were calculated alternatively by including (upper)
or not (lower) the C,, carbon. The angles between the rotation (major) axis
and the vector joining C,,: to the center of steric mass is given as OcM, and
the angle between the rotation (major) axis and the bond Ca-C,, is given as
6CB. Averages are given with root mean square deviations in parentheses.
Counts for each residue are listed in the last column.

A
Overlap model

1.0

0 0.0
0

o -1.0

-e

CD -2.0L-

a)

n -3.0
. _ll)

WU -4.0

B Repulsive core model

1.0

0
E
co -1.0

-V

CD -2.0

n -3.0
. _

CL 4

W -4.0

-5.0 V
-5.0 -4.0 -3.0 -2.0 -1.0 0.0

AMBER energy (kCal/mol)
1.0

ellipsoid Lennard-Jones potential cannot properly fit large
contact energies, as can be expected because, for short
distances, a sum of 6-12 potentials is poorly reproduced by
a single 6-12 potential, even though it is asymmetrical. To
obtain a reasonable fit to the energy values, the energy

constant Eij must be overestimated, and as a consequence,

small energy values, which correspond to larger distances,
appear to be constantly overestimated.

Notwithstanding these problems, it is remarkable that the
correlation coefficient between AMBER and ellipsoid en-

ergies obtained with both models is 0.87, in view of the
drastic simplification adopted.

Surprisingly, a test performed using a sphere instead of an
ellipsoid representation of side chains (employing volume

FIGURE 11 Residue-residue energy computed using ellipsoids versus
all-atom AMBER van der Waals energy. The ellipsoid energy is computed
using the "overlap model" (a) and the "repulsive core model" (b).

parameters derived from the ellipsoid model) leads to an
even slightly better correlation coefficient (0.90). However,
contrary to the ellipsoid models, energy minima for the five
proteins are obtained for values of the scaling factor k
consistently (20-30%) lower than the actual one (1.07).
This means that, although the correlation coefficient is high,
the intersphere distances are (globally) substantially larger
than the Lennard-Jones optimal ones. This fact may lead to
structure distortions upon energy minimization. It is worth
mentioning, however, that this result as a sphere model
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might be easily incorporated into most available molecular
modeling software packages.
A test was also performed on the homeodomain of thy-

roid transcription factor 1, a small molecule stabilized by a
densely packed hydrophobic core, and by hydrophobic in-
teractions among close residues in helices. Although the
ellipsoid and AMBER energy values cannot be safely com-
pared, because of the extensive (2000 steps) energy mini-
mization that was performed and that consistently lowered
the energy compared to the five-database high-resolution
structures (see Methods), it is interesting that the largest
AMBER residue-residue energies are also the largest resi-
due-residue energies found with both ellipsoid potential
models. Furthermore, for aromatic residues, for which mod-
eling as an ellipsoid may appear to be too rough an approx-
imation, the model does not break down. On the contrary,
the large contact energy between Trp 48 and His 52, which
is the largest calculated with the AMBER force field, is the
second and the third largest energy in the "overlap" and
"repulsive core" models, respectively, and the contact be-
tween Phe 20 and Phe 49, which is the fifth largest AMBER
energy, is within the largest 25 values in both models. A test
was also performed to check whether the ellipsoid repre-
sentation is able to detect large contact AMBER energies
and, conversely, whether large elliposid energies actually
correspond to large AMBER energies. After discarding the
few positive energies (three in total) in the simulations due
to the extensive minimization and to constraints on the
structure, only 10 (13) of the largest 100 AMBER energies
were below 0.1 kcal/mol in the ellipsoid simulation with the
"overlap model" ("repulsive core model"). The reverse test
shows that all of the 100 largest ellipsoid contact energies
that were computed in the ellipsoid simulation with the
"overlap model" ("repulsive core model") are above 0.1
kcallmol (0.4 kcal/mol) in the AMBER simulation.

CONCLUSIONS

We have analyzed the statistical behavior of proteins when
considered as simplified representations. The reported re-
sults may help in the choice or design of appropriate models
of protein structures for all those purposes that cannot be
pursued by means of an all-atom representation. Our sug-
gestion is that one may fix the bond lengths and bend angles
in a pseudo-bond model of proteins and maintain the Ca
trace pseudo-dihedrals as the only degrees of freedom. A
promising idea is that of exploiting ellipsoids to model
side-chain elongated shapes, although other degrees of free-
dom appear necessary to properly orient the ellipsoids. A
better degree of accuracy in all of these representations
could be attained by tuning rigid parameters to single amino
acids or amino acid types or taking into account the corre-
lation between different structural quantities, similar to pre-
vious approaches for the representation of proteins as C.
chains or Ca chains with attached Ca's (De Witte and
Shakhnovich, 1994; Rey and Skolnick, 1992; Oldfield and
Hubbard, 1994).

We wish to thank Dr. J. Carver (University of Wollngong, Australia) for
reading the manuscript and making useful comments on both the form and
content.
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